Upper Extremity Trauma: Shoulder

Bones & Radiographs

AP & Obl
- Ax & WP
- Y & ACJ
- AC Injury
- GH Dislocate
- Anterior
- Posterior
- CT
- Final Case
- Conclusion

Radiographic Views

AP & Obl
- Ax & WP
- Y & ACJ
- Anterior
- Posterior
- CT
- Final Case
- Conclusion

CT Optimization

Anterior
- Posterior
- CT
- Final Case
- Conclusion

Imaging Techniques

Glenohumeral Joint
- Radiographic Views
- CT Optimization

Imaging

Shoulder Trauma
- How not to miss a posterior dislocation

Scapula: Anterior View

Goal

Better 3-D Understanding of The Shoulder

Objectives

- Illustrate Anatomy
- 3-D Scapula
- Glenohumeral Joint
- Radiographic Views
- CT Optimization
- Shoulder Trauma
- How not to miss a posterior dislocation

Parts:

- **Body**
 - Razor
 - Thin
 - "Shoulder Blade"
 - No articular surfaces
 - Origin of all 4 Rotator Cuff (RC) Muscles

Scapula: Medial View

Goal

Better 3-D Understanding of The Shoulder

Objectives

- Illustrate Anatomy
- 3-D Scapula
- Glenohumeral Joint
- Radiographic Views
- CT Optimization
- Shoulder Trauma
- How not to miss a posterior dislocation

Parts:

- **Body**
 - **ANTERIOR**
 - **POSTERIOR**
 - **3D**
 - **Spine**

Scapula: Anterior Medial View

Goal

Better 3-D Understanding of The Shoulder

Objectives

- Illustrate Anatomy
- 3-D Scapula
- Glenohumeral Joint
- Radiographic Views
- CT Optimization
- Shoulder Trauma
- How not to miss a posterior dislocation

Parts:

- **Body**
 - **Triangular**
 - **3 Margins**
 - **2 Angles**

Scapula has complex 3-D anatomy

Helps to look at it from multiple views
Upper Extremity Trauma: Shoulder

Scapula: Posterior Medial View

Parts:
- **Body**
- **Spine**
- **Posterior**
- **Structure**
- **Off back of Body**
- **Defines RC muscles**
 - **Supraspinatus**
 - **Infraspinatus**

Scapula: Posterior View

Scapula: Lateral View

“Y-view”

3 Limbs:
- **Body**
- **Spine**
- **Coracoid**

Scapula: Anterior Lateral View

Coracoid is in Elbow

Clavicle: 2 Joints

"Long Bone", but not a straight bone

Clavicle: [U] "collarbear", "key"

Clavicle: [U] "collarbear", "key"
Upper Extremity Trauma:
Shoulder

Radiographs: Technical Points

- Both AP & Oblique:
 1) Shot Standing
 2) Shield Genitals
 3) Boomerang Filter
 Allows good exposure of GHJ without overexposure of ACJ

Boomerang Filter

- Sometimes we can see the filter on radiographs
- Usually we see only the internal radiopaque tracer chain

Radiographs: Need Orthogonal Views

- The 3 Orthogonal views to the GHJ are:
 - Oblique
 - "Grashey"
 - Axillary (supine)
 - West Point (prone)

Radiographs: Axillary view (supine)

- Profiles glenohumeral joint
 - Width
 - Arthritis
 - Alignment
 - Dislocations

Radiographs: West Point view (prone)

- Profiles glenohumeral joint
 - Width
 - Arthritis
 - Alignment
 - Dislocations
Upper Extremity Trauma: Shoulder

Radiographs: West Point vs Axillary

- AP view (upright)
- Axillary view (supine)

Both well show GHJ width/alignment
- Ax: Anterior glenoid overlaps clavicle
- WP: Well shows anterior glenoid

Radiographs: UW 3-view series

- Standard (trauma, pain)
 1) AP
 2) Oblique
 3) Axillary

Instability (3-views Glenohumeral Joint)

- 1) Oblique
- 2) Axillary
- 3) West Point

If need orthogonal views Scapula, ACJ

Radiographs: AC Joints (Bilateral)

Radiographs: Scapular Y view (PA)

Radiographs: AC Joints (Bilateral)

Shoulder: 3 Bones & 2 Joints

2 Ligaments attach clavicle to scapula:
- AC Lig
- CC Lig

AC injury types based on:
- Which ligaments are torn
- Degree/direction of A-C displacement

©Ken L Schreibman, PhD/MD 12/3/14 www.schreibman.info
Upper Extremity Trauma: Shoulder

Acromioclavicular Injury: Type 1

Bones & CT
- AC Lig: Sprain (intact)
- CC Lig: Intact
- ACJ: Aligned
- Radiographs: Normal

Shoulder Clavicle Dislocation
- AC Injury
- GH Dislocation
- Anterior
- Posterior
- CT

Final Case
- Conclusion

Rockwood & Green's Fractures in Adults 8th Ed. ©2015 [Kindle Edition]

Fig 41-2
- AC injuries most commonly occur in males <30 related to contact sports

Galen (120-199AD) diagnosed his own AC dislocation received from wrestling.
He treated himself with tight bandages to hold clavicle down, keeping arm elevated.
He abandoned the treatment after only a few days as it was uncomfortable.

Low compliance rate of shoulder bracing

Acromioclavicular Injury: Type 2

Bones & CT
- AC Lig: Torn
- CC Lig: Intact
- ACJ: Subluxated

Shoulder Clavicle Dislocation
- AC Injury
- GH Dislocation
- Anterior
- Posterior
- CT

Final Case
- Conclusion

Rockwood & Green's Fractures in Adults 8th Ed. ©2015 [Kindle Edition]

Fig 41-2
- D,V 21yoM

Acromioclavicular Injury: Type 3

Bones & CT
- AC Lig: Torn
- CC Lig: Torn
- ACJ: Dislocated

Symptomatic Clavicle Dislocation
- AC Injury
- GH Dislocation
- Anterior
- Posterior
- CT

Final Case
- Conclusion

Rockwood & Green's Fractures in Adults 8th Ed. ©2015 [Kindle Edition]

Fig 41-14
- L,L 42yoM

Acromioclavicular Injury: Type 4

Bones & CT
- AC Lig: Torn
- CC Lig: Torn
- Clavicle Posterior to Acromion

Symptomatic Clavicle Dislocation
- AC Injury
- GH Dislocation
- Anterior
- Posterior
- CT

Final Case
- Conclusion

AC injury is so rare I've never seen one

Acromioclavicular Injury: Type 5

Bones & CT
- AC Lig: Torn
- CC Lig: Torn
- ACJ: Very Dislocated

Symptomatic Clavicle Dislocation
- AC Injury
- GH Dislocation
- Anterior
- Posterior
- CT

Final Case
- Conclusion

Rockwood & Green's Fractures in Adults 8th Ed. ©2015 [Kindle Edition]

Fig 41-14
- L,L 42yoM

Acromioclavicular Injury: Type 6

Bones & CT
- AC Lig: Torn
- CC Lig: Torn
- Clavicle Posterior to Acromion

Symptomatic Clavicle Dislocation
- AC Injury
- GH Dislocation
- Anterior
- Posterior
- CT

Final Case
- Conclusion

Rockwood & Green's Fractures in Adults 8th Ed. ©2015 [Kindle Edition]

Fig 41-14
- L,L 42yoM

This type is very rare

Subtle overlap of Acromion on Clavicle

Rockwood & Green's Fractures in Adults 8th Ed. ©2015 [Kindle Edition]

Fig 41-14
- L,L 42yoM

This type is so rare I've never seen one
Upper Extremity Trauma: Shoulder

Upper Extremity Trauma

GH Dislocations: Anterior

Humerus Anterior-Inferior to Glenoid

- Easy to see on all radiographic views
- ½ Anterior Dislocations are subglenoid

Mechanism

Anterior humerus dislocates, postero-superior head impacts into anterior-inferior glenoid (creating Hill-Sachs fracture)

GH Dislocations: Hill-Sachs

- Posterior Humeral Head impacted on Anterior Glenoid
- Creating wedged fracture in the posterior-supero-lateral humeral head
- Hill-Sachs Defect

GH Dislocations: Bankhart Fx

- ± fracture antero-inferior glenoid
- Bankart fracture
- “Bony Bankart”
- The defect Bankart described was not of the bone, but of the cartilaginous labrum

GH Dislocations: Subglenoid

Humerus Anterior-Inferior to Glenoid

- Easy to see on all radiographic views
- Subglenoid

GH Dislocations: Anterior

- 2 Very rare types (I’ve never seen either…)
- Subclavicular
- Intrathoracic

Conclusion

Final Case

CT

GH Dislocate

AC Injury

Radiographs

Bones

AP & Obi

Ax & WP

Y & ACJ

Conclusion

www.schreibman.info

© 2014 Ken L Schreibman, PhD/MD

© 2014 Ken L Schreibman, PhD/MD

© 2014 Ken L Schreibman, PhD/MD

© Ken L Schreibman, PhD/MD 12/3/14

www.schreibman.info
Upper Extremity Trauma: Shoulder

Shoulder

Bankart: Often best seen on WP

- AP & Y
- ACJ
- GH Dislocate
- Anterior
- Posterior
- CT
- Final Case
- Conclusion

Dislocations: Anterior v Posterior

- Anterior Dislocations (97%)
 - Goes Anterior & Inferior
 - **Easy to see**
 - Indirect trauma
 - Rarely from direct blow
 - 48% fall at home, 35% during sports
- Posterior Dislocations (3%)
 - Goes Straight Posterior
 - **Harder to see**
 - 67% Trauma (Falls > MVA > Sports)
 - 31% Seizure
 - 2% Electrocution

Posterior Dislocation Clues: 1

- Humerus Stuck in Internal Rotation
- Lack of Parallelism on Oblique View

Posterior Dislocation Clues: 2

- Look at the Axillary/WP View!

Posterior Dislocation Clues: Bonus

- Trough Line Sign (Reverse Hill-Sachs)

Posterior Dislocation Clues:

- **Trough Line Sign** (Reverse Hill-Sachs)

- Anterior Dislocation:
 - Anterior Glenoid
 - Impacts Info
 - Anterior Humerus
 - "Hill-Sachs"
- Posterior Dislocation:
 - Posterior Glenoid
 - Impacts Info
 - Posterior Humerus
 - Trough Line Sign

West Point: Well shows anterior glenoid

Axillary view:

- Clavicle overlaps anterior glenoid

Posterior Dislocation Clues:

- **Trough Line Sign** (Reverse Hill-Sachs)

- Anterior Dislocation:
 - Anterior Glenoid
 - Impacts Info
 - Anterior Humerus
 - "Hill-Sachs"
- Posterior Dislocation:
 - Posterior Glenoid
 - Impacts Info
 - Posterior Humerus
 - Trough Line Sign

West Point: Well shows anterior glenoid

Axillary view:

- Clavicle overlaps anterior glenoid

Posterior Dislocation Clues:

- **Trough Line Sign** (Reverse Hill-Sachs)

- Anterior Dislocation:
 - Anterior Glenoid
 - Impacts Info
 - Anterior Humerus
 - "Hill-Sachs"
- Posterior Dislocation:
 - Posterior Glenoid
 - Impacts Info
 - Posterior Humerus
 - Trough Line Sign

West Point: Well shows anterior glenoid

Axillary view:

- Clavicle overlaps anterior glenoid

Posterior Dislocation Clues:

- **Trough Line Sign** (Reverse Hill-Sachs)

- Anterior Dislocation:
 - Anterior Glenoid
 - Impacts Info
 - Anterior Humerus
 - "Hill-Sachs"
- Posterior Dislocation:
 - Posterior Glenoid
 - Impacts Info
 - Posterior Humerus
 - Trough Line Sign

West Point: Well shows anterior glenoid

Axillary view:

- Clavicle overlaps anterior glenoid
Upper Extremity Trauma: Shoulder

Optimizing Bone CT: General

There are always 3 things technologists can do to optimize Bone CT:

1) **Optimize Patient Positioning**
 - Try to center the bone
 - Get other bones out of scanning FOV

2) **Optimize Scanning Technique**
 - Thin slices, 50% overlap
 - Use small focal spot, small display FOV

3) **Optimize Reformats**
 - 2D: Angle slices relative to ANATOMY
 - 3D: Rotate & Segment

Optimizing Bone CT: Shoulder

1) **Optimize Patient Positioning**
 - Try to center the bone
 - Get other bones out of scanning FOV
 - This depends on body habitus

2) **Optimize Scanning Technique**
 - Cannot manually select small focal spot
 - Small focal spot comes on automatically if the mA-particular value, based upon the KV
 - Ask your Application person for your CT scanner
 - Can use Automatic Exposure Control (AEC)

 a) **Use Small Focal Spot**
 - Cannot manually select small focal spot
 - Small focal spot comes on automatically if the mA-particular value, based upon the KV
 - Ask your Application person for your CT scanner
 - Can use Automatic Exposure Control (AEC)

 b) **Reduce the mA**
 - Set the mA value to be less than the maximum allowed mA for the small focal spot

Shoulder Exams at UW DOR

<table>
<thead>
<tr>
<th>Body Region</th>
<th>Shoulder: Sorted by Modality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radiographs</td>
<td>Record total number of exams each month</td>
</tr>
<tr>
<td>Oblique</td>
<td>CT exams</td>
</tr>
<tr>
<td>AP</td>
<td>Calculated number of radiographic exams (RG)</td>
</tr>
<tr>
<td>Y & ACJ</td>
<td>Doesn’t include fluoroscopic injections (not listed by joint)</td>
</tr>
<tr>
<td>AC Injury</td>
<td>We do daily shoulder injections for pain (steroids), MR-Arthro (Gol)</td>
</tr>
<tr>
<td>GH Dislocate</td>
<td>Train all UW Residents</td>
</tr>
<tr>
<td>CT</td>
<td>Doesn’t include Ultrasound (not listed by joint)</td>
</tr>
<tr>
<td>CT</td>
<td>UW MSK US Clinic</td>
</tr>
<tr>
<td>CT</td>
<td>DT: Rotator Cuff</td>
</tr>
<tr>
<td>CT</td>
<td>Rx: Steroids. Lavage Ca** Tendonitis</td>
</tr>
</tbody>
</table>

Radiographs

- Obstetrics
- Ax & WP
- Y & ACJ
- AC Injury
- GH Dislocate
- Anterior
- Posterior
- CT

Conclusion

CT: Mostly for surgical planning

CT: Mostly for surgical planning

Shoulder: What to Order When

- **Radiographs**
 - Obstetrics
 - Ax & WP
 - Y & ACJ
 - AC Injury
 - GH Dislocate
 - Anterior
 - Posterior
 - CT

Conclusion

CT: Mostly for surgical planning

CT: Mostly for surgical planning

© Ken L Schreibman, PhD/MD 12/3/14 www.schreibman.info
Upper Extremity Trauma: Shoulder

Optimizing Bone CT: General

2) Optimize Scanning Technique (This is what my physicist tells me...)
 a) Larger pixel size
 b) Thin slices with 50% overlap
 - Shoulder: Thinner but not too thin (1-1.5mm)
 - <1mm slices may be too noisy (We use 1.25mm)
 c) 50% overlap yields better reformats
 d) Use "Ultra High Resolution" (UHR)... if available on your CT scanner
 - This will always be an issue with shoulders
 e) Hi Res uses fluctuating focal spot position
 - Minimizes off-center sharpness degradation
 - Particularly useful for shoulders

Optimizing Bone CT: Shoulder

2) Optimize Scanning Technique (This is what my physicist tells me...)
 b) Thin slices with 50% overlap
 - Shoulder: Thinner but not too thin (1-1.5mm)
 - <1mm slices may be too noisy (We use 1.25mm)
 c) 50% overlap yields better reformats
 - Adds information to the stack of axial images
 - Pitch close to 0.5
 - Reduces helical artifacts
 - Uses less mA, hence use small focal spot

Optimizing Bone CT: Shoulder

3) Optimize Reformats
 - Angle slices relative to ANATOMY Not relative to table
 - Coronal slices angled perpendicular to GHJ
 - Sagittal slices angled parallel to GHJ
 - "All these reformats should be turned off"

Optimizing Bone CT: Shoulder

3b) Optimize 3-D Reformats
 - Series of 36 rotating images, 10° intervals
 - Rotate around both vertical and horizontal axes
 - Disarticulate humerus/scapula
Upper Extremity Trauma: Shoulder

One final case...

R,D 58yoM: Cleaning gutters, fell from 6ft ladder. Fell on elbow, shoulder pain.

Indirect trauma was to shoulder.

Direct trauma was to elbow. Surgical Neck Fracture

2-Part Fracture (at least)

Anterior Dislocation

Subcoracoid GT Fx

Triceps Spur

CT: Sagittal Reformat (Parallel to GHJ)

Post ORIF

Can download this and all of my lectures in various formats.

Questions?