Alphabet Soup:
Making sense of the new WHO CNS glioma classifications and the growing importance of molecular markers

Jeffrey Cagley, MD
John-Paul J. Yu, MD, PhD

Division of Neuroradiology
Department of Radiology
University of Wisconsin Hospital and Clinics
Glioma

- Most common primary intraaxial tumor
- Occur anywhere in the CNS, but most commonly arise from brain glial tissue

- **Incidence** (per 100,000) in US
 - All glioma: ~4.7-5.7
 - All astrocytoma: ~4.5
 - **Glioblastoma**: 3.2
 - Anaplastic Astrocytoma: 0.4
 - Oligodendroglioma: 0.3
 - Anaplastic oligodendroglioma: 0.1

George Gershwin, American composer – Cause of death: glioma
Glioma

- 5-year survival (US)
 - All astrocytoma:
 • Grade I-IV: 47%
 - Glioblastoma:
 • Grade IV: 4.7%
 - Anaplastic Astrocytoma:
 • Grade III: 27%
 - Oligodendroglioma:
 • Grade II-III: 79%
 - Anaplastic oligodendroglioma:
 • Grade III: 51%

Charles Whitman, Responsible for 1966 U of Texas massacre - Glioma found at autopsy
Astrocytoma
- WHO grade II or III (anaplastic)
- Ill-defined T2/FLAIR hyperintense expansile white matter lesion
- Two thirds are supratentorial, most frontal/temporal
- Grade II, more homogenous, unlikely to enhance
- Grade III, more heterogeneous, can enhance
- Low cerebral blood volume = low grade, low to high blood volume = high grade
Radiologic Refresher on Diffuse Glioma

• Oligodendroglioma
 – WHO grade II or III (anaplastic)
 – T2/FLAIR hyperintense expansile white matter lesion
 – >80% supratentorial, most frontal
 – Heterogenous, can **calcify**, have cysts, and enhance (50%)
 – Low cerebral blood volume = low grade, low to high blood volume = high grade
 – Prominent enhancement, hemorrhage or necrosis? Think anaplastic/high grade

Pathology: Grade III
Anaplastic oligodendroglioma
Radiologic Refresher on Diffuse Glioma

Glioblastoma
- WHO grade IV
- Ill-defined T2/FLAIR hyperintense expansile white matter lesion + vasogenic edema
- Most supratentorial, rarely occipital
- Variable enhancement pattern: thick rim, solid, patchy nodular
- Heterogenous, can have cysts, necrosis, hemorrhage, calcium rare
- High cerebral blood volume on perfusion
- Hypercellular elements T2 hypointense, restrict diffusion

Pathology: Grade IV glioma (Glioblastoma)
Though imaging can occasionally predict the pathology, it is not a replacement for surgical pathology.
The Old Paradigm

- Until 2016, gliomas (and all CNS tumors) classified solely by HISTOLOGY

- Assumed histology could predict cell of origin and level of differentiation. Considered:
 - Ultrastructure
 - Cellular features
 - Staining for cellular lineage-related proteins
The Old Paradigm

• Can histologic appearance dependably predict prognosis and tumor behavior?
• Sometimes, but…
 – Some grade II astrocytomas act like grade II astrocytomas
 – Some grade II astrocytomas act like glioblastoma
 – Not all glioblastomas are created equal

These problems and advances in technology drove the current paradigm shift.
Developing a New Paradigm

- 2007 WHO guidelines: genetic markers were applied to *preexisting* categories to aid in prognosis
- 2014 International Society of Neuropathology Meeting – set groundwork for new classification scheme
- Finalized 2016 CNS WHO subsequently released
- Notably, molecular parameters are now used for tumor *classification*, not just *prognosis*
Where to Start

• The more circumscribed gliomas and childhood gliomas (pilocytic astrocytoma, pleomorphic xanthoastrocytoma) are now considered pathologically and clinically dissimilar from diffuse astrocytoma than oligodendroglioma.

• The following slides will subsequently detail diffusely infiltrating gliomas.
The Key Flowchart

Pathology

Astrocytoma
- ATRX loss, P53 mutation
 - Astrocytoma

Oligoastrocytoma
- 1p/19q codeletion
 - IDH-Wild Type
 - Oligodendroglioma

Oligodendroglioma
- IDH-Mutant

Glioblastoma
- IDH-Mutant
- IDH-Wild Type
 - MGMT methylation status

Oligodendroglioma NOS
- IDH-Mutant

Astrocytoma NOS, Oligodendroglioma, NOS
- IDH-Wild Type

Oligoastrocytoma, NOS
- IDH-Wild type Astrocytoma, Oligodendroglioma NOS

Glioblastoma, IDH-Mutant

Glioblastoma, IDH-Wild Type
First Branch Point: IDH mutation status
IDH (Isocitrate dehydrogenase 1 and 2)

- Tumor status is either wild-type (functional IDH enzyme) or mutated
- Mutation results in production of 2-hydroxyglutarate (2-HG) which can effect methylation profile of multiple genes and can alter telomere length
- Mutation also results in a reduction of alpha-ketoglutarate and NADPH, which can facilitate cellular proliferation
IDH mutation has been implied in initial tumorigenesis, followed by further molecular pathway changes which push either astrocytic or oligodendroglial differentiation.

Normal glial precursor

- IDH MUTATION
- 1p/19q codeletion plus other mutations

Precancerous glial cell

- ATRX, P53, and other mutations

Oligodendroglialoma

Astrocytoma
Unclear if overall function of IDH mutation is oncogenic or if mutation results in loss of tumor suppression.

What is clear, is that IDH wild-type and mutated tumors are clinically distinct entities.

IDH mutated tumors have a relatively favorable outcome – less aggressive, better progression-free and overall survival.

The minority of GBM (12%), majority of grade II-III infiltrating gliomas are IDH mutated – and that said: **IDH wild-type low grade gliomas ACT like glioblastoma**
Pathology: Diffuse infiltrating astrocytoma, grade II

Would knowing IDH status change your reporting?

Conceivably, as the threshold for calling progression should be lower in an IDH wild-type glioma.
A Word on IDH in Glioblastoma

- IDH is an important prognostic indicator in GBM - IDH mutant GBMs have an improved survival (~30 mos) over wild-type (~15 mos)
- Additionally, presence of IDH mutation (~10% of GBM), implies tumor arose from degeneration of initial lower grade glioma
- Wild-type GBM (~90%) implies a de novo tumor which did not develop from a low grade precursor

An example of a heterogeneously enhancing, diffusion restricting grade IV glioma
Second branch point: For grade II & III gliomas, differentiating between astrocytoma and oligodendroglioma.
ATRX loss

- Alpha-thalassemia/mental retardation syndrome x-linked gene
- Function: telomere maintenance enzyme
- Mutation/loss of function almost never occurs in the setting 1p/19q codeletion
- Loss of function almost always occurs in the setting of IDH mutation – thus making thea a powerful marker for astrocytoma
- Presence of ATRX function loss correlates with a favorable prognosis in astrocytoma

Grade II astrocytoma, positive for ATRX loss
p53 mutation

• p53 is a powerful tumor suppressor gene, known as the “guardian of the genome”

• Acts to promote DNA repair, arrest the cell cycle, and promote apoptosis in the setting of DNA damage

• p53 mutation occurs in the setting of numerous different cancers, not just glioma
 – Think Li-Fraumeni syndrome: congenital p53 mutation leads to development of multiple malignancies

• p53 when mutated/non-functional promotes cell proliferation, invasion, and immortalization
p53 mutation

• p53 status acts as a clear division between oligodendroglioma and astrocytoma – one study (Wang YY, AJNR 2015) showed that all low-grade gliomas were either p53 mutated or 1p/19q codeleted

• Unclear what the effect of mutation is on prognosis

• Curiously, some data suggests p53 mutated tumors in specific locations (left medial and right anterior temporal lobes) have shorter progression free survival

• Can in theory be used to differentiate between “primary” GBM (p53 intact) and “secondary” GBM arising from dedifferentiated astrocytoma (p53 mutated)
1p/19q codeletion: The oligodendroglioma marker
1p/19q Codeletion

- Deletions involving the 1p and 19q chromosomal arms – detected by FISH analysis
- Codeletion effects multiple genes, notably resulting in CIC and FUBP1 inactivation (both transcription regulators)
- Considered to be an objective marker of oligodendroglioma cellular lineage, though notably, a small subset of glioblastomas can also be 1p/19q codeleted as well
1p/19q Codeletion

- Seen in up to 90% oligodendrogliomas when strict histopathologic correlation is employed.
- Most gliomas that are not 1p/19q codeleted have ATRX loss and P53 mutation, which are markers of astrocytoma.
- Codeleted tumors act more indolently and respond better to temozolomide and radiation, thus, codeletion status is correlated with improved survival.
Radiologic implications of 1p/19q codeletion status

Both tumors resected – pathology proven glioblastoma

15 MONTHS
1p/19q not deleted

120 MONTHS
1p/19q codeleted
A Word on Oligoastrocytoma

- Contentious diagnosis: tumor with features of both astrocytoma and oligodendrogliaoma

- Now, 1p/19q codeletion status and ATRX and p53 status allow for easier classification of previously ambiguous tumors

- Oligoastrocytoma still exists per WHO 2016:
 - cases where marker testing is unavailable
 - rare cases where markers contradict: 1p19q codeleted, ATRX loss tumor, for example
Q: How does oligoastrocytoma fit on the master flowchart?

A: Not cleanly, as molecular markers allow for more concise astrocytoma/oligodendroglioma differentiation.
MGMT Methylation Status:
Not a diagnostic marker, but instead a marker to predict response to therapy
MGMT methylation

- MGMT = O6-methyl-guanine-DNA methyltransferase, a DNA repair enzyme
- Temozolomide methylates the O6 position of guanine leading to DNA breakage. The effect of temozolomide can be repaired/negated by a functional MGMT enzyme
• The MGMT gene itself can be methylated or “turned off” by promotor region methylation and epigenetic silencing

• Methylated MGMT means temozolomide can work better as MGMT is not produced, thus methylation is associated with increased survival

• MGMT methylation is detected in ~36% gliomas
MGMT methylation

- The MGMT gene itself can be methylated or “turned off” by promotor region methylation and epigenetic silencing
- Methylated-MGMT means temozolomide can work better, and is therefore associated with increased survival
- Methylation is encountered in ~36% gliomas
MGMT methylation

• The MGMT gene itself can be methylated or “turned off” by promotor region methylation and epigenetic silencing
• Methylated-MGMT means temozolomide can work better, and is therefore associated with increased survival
• Methylation is encountered in ~36% gliomas
An example of MGMT status in radiologic follow-up

MGMT NOT methylated

PROGRESSION: 12 MONTHS

MGMT methylated

PROGRESSION: 39 MONTHS
Summation

• New WHO 2016 guidelines assign more importance to molecular markers in the diagnosis, not just prognosis, of diffuse glioma

• IDH mutation – key mutation in development of low grade glioma
 – Improved prognosis when present

• 1p/19q codeletion = oligodendroglioma
 – Improved prognosis when present

• ATRX and p53 mutated = astrocytoma

• MGMT methylated = improved response to temozolomide, increased survival
The Key Flowchart

Astrocytoma

ATRX loss, P53 mutation

Oligoastrocytoma

MGMT methylation status

Oligodendroglioma

1p/19q codeletion

IDH-Mutant

IDH-Wild Type

Glioblastoma

IDH-Mutant

IDH-Wild Type

Astrocytoma NOS, Oligodendroglioma, NOS, Oligoastrocytoma, NOS

Glioblastoma, IDH-Mutant

Glioblastoma, IDH-Wild Type

Astrocytoma, Oligodendroglioma NOS

Oligodendroglioma, NOS